IV B.Tech - I Semester - Regular Examinations - October 2017

ROBOTICS
 (MECHANICAL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$

1. a) What is the essential feature that distinguishes soft automation from hard automation?
b) Where is the end-effector connected to the manipulator?
c) Discuss the relative merits and demerits of hydraulic actuator systems.
d) Why homogeneous coordinates are required in modeling of robotic manipulators?
e) What are the parameters for a link for kinematic modeling? Which of these parameters are variable and which are constant for a revolute joint and a prismatic joint?
f) Explain the differential motions of a robot.
g) Explain the two common approaches used to plan manipulator trajectories.
h) Discuss the objectives of sensors in robotic sensory devices.
i) Differentiate between tactile and non-tactile sensors.
j) Explain the need of branching in a robot program.
k) What are the possible robot applications in manufacturing industries?

PART - B

Answer any THREE questions. All questions carry equal marks. $3 \times 16=48 \mathrm{M}$
2. a) Explain pitch, yaw and roll motions of a robot wrist, with the help of sketches.
b) Justify whether a gripper or an end-of-arm tooling is appropriate for the following tasks:
(i) Welding
(ii) Scraping paint from a glass pane.
(iii) Drilling a hole.
(iv) Tightening a nut of automobile engine.
3. a) Develop the homogenous transformation matrix for a rotation of 90° about the z - axis, followed by a translation of $(3,7,9)$.
b) Formulate the forward kinematic model for 2-DOF RR type Planar Robot.

8 M
4. a) Develop the Jacobian matrix for a cylindrical configuration manipulator.
b) Build the dynamic model for a one-DOF, one-axis planar manipulator with one rotary joint (the inverted pendulum) using Lagrange-Euler formulation. Assume the link to be a thin cylinder (slender member) with length L and mass m acting at the centroid of the link.
5. a) List the situations where robot will require non contact type sensors. Identify suitable non contact sensors for these applications and explain the working of any one sensor.

8 M
b) Explain the manipulator motion commands in AML robot programming language.
6. a) Explain about the important items to be considered in deciding the use of robots in
(i) Manufacturing operation
(ii) Hazardous operation
b) Discuss the application of robots in assembly operations.

8 M

